Date: 2005-05-22 06:24 pm (UTC)
> Отдельным комментарием приведу, в качестве примера, некоторую конкретную историю

В эпоху парадоксов математики запретили множеству быть элементом самого себя, как непосредственно, так и через промежуточные множества например, ситуация A принадлежит B, B принадлежит C, а C принадлежит A, является запрещенной).

Из-за этого получилось, что функция не может быть своим собственным аргументом (функция определяется, как множество пар (аргумент, результат), а пара (x,y) определяется, например, как множество {x, {x,y}}).

Однако в программировании текст программы всегда можно подать ей самой на вход, и есть язык, отражающий это обстоятельство в чистом виде, - лямбда-исчисление, - где программы и данные в точности одно и тоже.

Поэтому возникли трудности в создании формальной математической семантики модели этого языка. Трудности эти были преодолены следующим образом. Dana Scott (1969) показал, что хотя мощность множества всех функций A->A всегда больше мощности множества A, практически любое топологическое пространство R можно непрерывно вложить в некоторое топологическое пространство X(R), такое что X(R) гомеоморфно множеству всех непрерывных функций [X(R)->X(R)] (квадратные скобки обозначают, что берутся только непрерывные функции).

"X(R) гомеоморфно множеству всех непрерывных функций [X(R)->X(R)]" --- это уравнение, решающееся с помощью изящного предельного перехода. Строится удобное X0(R), затем X1 = [X0->X0], X2 = [X1->X1], ... И если все это делать достаточно аккуратно, то оказывается, что эта последовательность имеет предел, X(R), который и является решением искомого уравнения. Запишем получившийся гомеоморфизм, как пару функций, i:X(R)->[X(R)->X(R)], j:[X(R)->X(R)]->X(R).

Тогда программа p из лямбда-исчисления в модели обозначает элемент P принадлежщий X(R). Результат применения p к самой себе в модели есть (i(P))(P). Все получается без парадоксов...
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

anhinga_anhinga: (Default)
anhinga_anhinga

July 2021

S M T W T F S
    123
45678910
11121314151617
18 192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 22nd, 2025 05:16 pm
Powered by Dreamwidth Studios