anhinga_anhinga: (Default)
[livejournal.com profile] russhatter showed me a very tempting paper in mathematical linguistics (in the comments to the previous post). I don't understand it well enough (yet) to say whether I like it. It does use monoidal categories to achieve its goals.

Perhaps someone would want to comment on this, or would find the reference interesting.

http://arxiv.org/abs/1003.4394

"Mathematical Foundations for a Compositional Distributional Model of Meaning
Authors: Bob Coecke, Mehrnoosh Sadrzadeh, Stephen Clark
(Submitted on 23 Mar 2010)

Abstract: We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. [...]"

Update: remarks )
anhinga_anhinga: (Default)
Math question:

http://en.wikipedia.org/wiki/Ideal_%28order_theory%29#History

"Ideals were introduced first by Marshall H. Stone, who derived their name
from the ring ideals of abstract algebra. He adopted this terminology
because, using the isomorphism of the categories of Boolean algebras and of
Boolean rings, both notions do indeed coincide."

For these ideals we have a dual notion -- filters. Can one pull that
duality back to ring and algebra ideals?

*****

[livejournal.com profile] soyka62 has a great collection of pictures. This one is presumably Yves Decoste:

http://soyka62.livejournal.com/490480.html

Some of the more recent posts:

http://soyka62.livejournal.com/576406.html
http://soyka62.livejournal.com/547444.html
anhinga_anhinga: (Default)
I wonder what happens if school kids study graph theory before geometry.

Was this tried?
anhinga_anhinga: (Default)
http://sbseminar.wordpress.com/2010/02/09/grothendiecks-letter/
http://en.wikipedia.org/wiki/Grothendieck#Retirement_into_reclusion

It's an interesting question -- to what extent a person owns his/her writings (not by law, but morally), especially if those writings have already become an integral and important part of the overall culture?
anhinga_anhinga: (Default)
Ray Solomonoff died 3 weeks ago in Cambridge. Among other things, he was the first person who discovered what we now call Kolmogorov complexity. Очень необычный человек, даже визуально, он был весь светящийся, в полном соответствии со своим именем, как на фотографии на своем сайте. via )

Lattices vs. categories. Ретах опубликовал короткие воспоминания об И.М.Гельфанде, которые заканчиваются описанием того, как Гельфанд читал доклад о теории решёток на заседании пямяти Бирхгофа в Гарварде во время знаменитой первоапрельской метели в 1997-ом году. Ретах говорит, что после доклада Гельфанд сказал ему: "А знаете почему я согласился выступить? Бирхгоф тут не при чем, надо искать замену теории категорий, слишком она жесткая. Может быть, решетки подойдут". Read more... )

Witten and Feynman integrals. Интересное обсуждение с центральной идеей, что деятельность Witten'а основывается не на физической интуиции, а на интуиции фейнмановских интегралов (если это так, то это проливает довольно много света на то, что там происходит): Read more... )

I'll be happy to translate Russian parts into English upon request (in comments).
anhinga_anhinga: (Default)
The metric viewpoint: how far two objects are from each other. The logical viewpoint: to what degree two objects overlap.

Fuzzy mathematics is traditionally done from the logical viewpoint, so the first step in introducing fuzzy metrics is often the transformation f(x,y) = exp(-d(x,y)).Read more... )

However, this seems to be a rather superficial duality: basically two equivalent ways to write the same things using different notation.

The question is whether there is also a natural deeper duality here (of a contravariant nature, where function arrows would reverse direction when one switches between these two viewpoints).
anhinga_anhinga: (Default)
Assume consistency of (Peano) arithmetic. Add the negation of a statement expressing its consistency to this arithmetic, the result should still be consistent. Then translate the resulting logic into a first-order logic. By the compactness theorem, the resulting logic has a model.

Are there any interesting models resulting from this? Are there any models, which would illuminate the nature of the resulting logic? Or, are there any such models which are easily understood?
anhinga_anhinga: (Default)
[livejournal.com profile] andrej_bauer -- for a rather high-brow low-volume blog Mathematics and Computation by Andrej Bauer.

[livejournal.com profile] ann_althouse -- for a rather high-volume Althouse "general purpose" blog, which was pretty good lately. (Today includes: It's a little dreary in New York City, reference to an article about prototype contact lenses with built-in circuits and lights (of course, we are being promised commercially available see-through computer eyeglasses for more than a decade now, but it does not looks like one can get them), and [Condi Rice] doesn't "expect" to be a part of the campaign. So then, she's willing to do it..)
anhinga_anhinga: (Default)
Обычно пучки над топологиями Гротендика излагают довольно сложно, привлекая расслоенные произведения и уравнители, и это хорошо только для довольно узкого круга людей, у которых есть соответствующая интуиция.

Оказывается, это можно сделать гораздо проще, так что конструкцию может понять любой человек, немного знакомый с теорией категорий, без всяких расслоенных произведений и уравнителей. Я отсканировал несколько страниц, которые объясняют как это делается -- может быть, это кому-нибудь пригодится.

Ещё одно замечание в связи со всем этим состоит в том, что стрелки в любой категории можно понимать не только как абстракцию понятия функции, но и как абстракцию понятия аппроксимации, и такой способ думать может быть полезен в разных ситуациях. scans (800px wide, 500KB) )
anhinga_anhinga: (Default)
Google research papers (about 250 papers) are collected here:

http://labs.google.com/papers.html

Meanwhile arxiv.org is getting really large -- more than 430,000 texts in physics, mathematics, computer science, quantitative biology and statistics, including some full length books.

For example, the new classic monograph in the theory of N-categories and infinity-categories, Higher Topos Theory by Jacob Lurie, is there.

John Baez

Mar. 4th, 2007 06:32 pm
anhinga_anhinga: (story)
John Baez talks about string theory and why more physicists should concentrate on the other approaches in his latest "This Week's Finds in Mathematical Physics" ([livejournal.com profile] john_baez):

http://math.ucr.edu/home/baez/week246.html

The last part where he talks about "hill climbing" vs. "valley crossing" approaches to physics is especially interesting.

He also runs a very cool group blog together with David Corfield and Urs Schreiber called The n-Category Café. The latest entry is about a new attempt to formulate a topos foundation for theories of physics by Andreas Döring and Chris Isham.
anhinga_anhinga: (Default)
Cool Japan 2007 (MIT-Harvard), Feb.28-Mar.3 Read more... )

Tutorials on forcing Read more... )

Update: A small piece of the "forcing story": Skolem's paradox -- a powerset of a countable set is uncountable, so the existence of a countable model of formal set theory seems to yield a paradox.
anhinga_anhinga: (Default)
Some interesting paper titles on the page of Calculemus'06 (13th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning 2006).

One of the authors, Simon Colton, wrote a thesis "Automated Theory Formation in Pure Mathematics", and one can read its table of contents on the Amazon site.
anhinga_anhinga: (Default)
What happens when a guy refuses to accept his Fields medal? The press does not even mention the names of other Fields winners, as if the refusal is the news, and not the achievement. The most one gets from Washington Post is "three other mathematicians -- another Russian, a Frenchman and an Australian -- also won Fields honors this year".

The people, who received their Fields medals, are Andrei Okounkov, Terence Tao, and Wendelin Werner.
anhinga_anhinga: (Default)
Recently Esenin-Volpin wrote a paper The Completeness of Classical Arithmetic.

The chances that this is correct are not very high, obviously. The discussion of Goedel incompleteness results is on page 43 (Volpin thinks something is wrong with them, and not with his proof). The core of the Volpin's proof is on pages 39-43, if anyone who likes syntactic logical manipulations wants to look at it.
anhinga_anhinga: (Default)
http://citeseer.ist.psu.edu/481412.html

by Steven Vickers

"Last year I wrote a short article "Toposes pour les nuls", with the aim of explaining toposes (and in particular their nature as generalized topological spaces) to those who knew nothing about them. Unfortunately, it seems that I was unsuccessful at this aim, for when I presented the material at a seminar I was told that I should write another article per les vraiment nuls. This is intended to be it."

Была бы полезна ещё одна итерация, "топосы для абсолютных нулей" :-) Тем ни менее, здесь всего 12 страниц, и категории появляются только в самом конце..

Profile

anhinga_anhinga: (Default)
anhinga_anhinga

July 2021

S M T W T F S
    123
45678910
11121314151617
18 192021222324
25262728293031

Syndicate

RSS Atom

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jun. 17th, 2025 06:26 am
Powered by Dreamwidth Studios